藤茶提取物二氫楊梅素

來源:藤茶

拉丁名稱:Ampelopsis grossedentata(Hand-Mazz)WT Wan

提取部位:葉子

規格: 5%-98%
有效成份 :二氫楊梅素

CAS:327-97-9

檢測方式:HPLC
顏色: 類白色粉末

 

植物介紹:
顯齒蛇葡萄( Ampelopsis  grossedentata(Hand - Mazz)WT Wan ) 顯齒蛇葡 藤,茶屬 葡萄科 ,蛇葡萄屬,又稱藤茶,木質藤本, 植 物體全部無毛;卷須二分叉,長可達 12cm。葉為 二 回羽狀復葉 ,長可達 21cm,小葉9 ~15 片,最下 羽 片有小葉3 片;枝頂部葉為一回羽狀復葉;小葉草質或薄紙質,長橢圓形、卵形、菱狀狹卵形或披針形, 長 2.5 ~ 7cm,寬 13cm,頂端漸尖或急尖,基部楔形或寬楔形,邊緣有粗鋸齒,上面綠色, 下面淡綠色,幼葉略帶紫紅色;葉柄長 1.5 ~3cm,枝上部葉几無柄,頂生小葉具柄,側生小葉無柄,
稍偏斜。聚傘花序與葉對生;總花梗長 3~5cm;花小,黃綠色;花萼淺杯狀,花瓣 5片,長圓形;雄蕊 5 枚;花盤淺杯狀。漿果近球形,直徑 7~10mm。花期 6~9 月,果期 7~11 月。采收時間為 4~8 月份。
產地生源:湖南、雲南、廣西、廣東、江西、貴州、湖北、福建(南靖、上杭、龍岩、連城、長汀、永安、三明、沙縣、寧化、建寧、南平、建甌、建陽、武夷山、浦城、順昌、光澤)等海拔 400~1300 米的山地灌叢中、林中、石上、河邊。
化學成分: 主要含有二氫楊梅素(dihydromyricetin ),楊梅素( myricetin )、槲皮素(quercetin)、槲皮素,花旗松素( taxifolin)、洋芹苷(apiin)等黃酮類物質。其主要成分為二氫楊梅素。 
 
 
 

 

二氫楊梅素的功效

二氫楊梅素為葡萄屬植物藤茶的提取物,是藤茶中的主要活性成分黃酮類化合物,此類物質具有清除自由基、抗氧化、抗血栓、抗腫瘤、消炎等多種奇特功效;而二氫楊梅素是較為特殊的一種黃酮類化合物,在解除醇中毒、預防酒精肝、脂肪肝、抑制肝細胞惡化、降低肝癌的發病率、抗高血壓、抑制體外血小板聚集和體內血栓的形成、降低血脂和血糖水平,提高 SOD 活性以及保肝護肝等方面具有特殊功效。

藤茶提取物 - 二氫楊梅素簡介

藤茶,是葡萄科蛇葡萄屬的一種野生木質藤本植物,提取成分為二氫楊梅素,其中主要活性成分為黃酮類化合物,此類物質具有清除自由基、抗氧化、抗血栓、抗腫瘤、消炎等多種奇特功效;而二氫楊梅素是較為特殊的一種黃酮類化合物,除具有黃酮類化合物的一般特性外,還具有解除醇中毒、預防酒精肝、脂肪肝、抑制肝細胞惡化、降低肝癌的發病率等作用。是保肝護肝,解酒醒酒的良品。

HPLC法測定二氫楊梅素含量的操作規程

起草單位:長沙上禾生物科技有限公司

目  的:HPLC法測定二氫楊梅素含量的操作規程

責任人:QC員。

內  容:

1、 試劑

1.1 甲醇(HPLC級)

1.2 蒸餾水(AR級)

1.3冰醋酸(HPLC級)

2、 對照品

二氫楊梅素(購自中國藥品生物制品檢定所)

3、 儀器和用具

3.1 電子天平(1/100000)

3.2 玻璃儀器:100ml容量瓶

3.3 安捷倫1220 HPLC

4、液相條件

4.1流動相:甲醇:水:冰醋酸=50:50:1

4.2檢測波長:292nm

4.3流速:1ml/min

4.4柱溫:30℃

5 、  操作步驟

5.1 對照品溶液的制備  精密稱取在110℃乾燥至恆重的二氫楊梅素對照品10mg,置50ml容量瓶中,加50%甲醇適量,超聲處理10min使溶解,放冷,加50%甲醇至刻度,搖勻,備用。

 5.2樣品溶液制備  精密稱取在110℃乾燥至恆重的二氫楊梅素樣品10mg,置50ml容量瓶中,加50%甲醇適量,超聲處理10min使溶解,放冷,加50%甲醇至刻度,搖勻,備用。

6、檢測

取對照品溶液和樣品溶液0.22μm針孔過濾器過濾,進樣20µl,根據峰面積計算樣品含量。

含量按以下公式計算:

    A2 x C1 x T

R=------------------------- x 100

A1 x C2

C1: 對照品的參考濃度,mg/ml

C2: 樣品的參考濃度,mg/ml

A1: 對照品溶液的色譜主峰值面積

A2: 樣品溶液的色譜主峰值面積

T:  對照品的含量

藤茶生產工藝流程

  藤茶提取物-二氫楊梅素生產工藝流程:
 
原料挑洗去雜粉碎乙醇提取濃縮離心上大孔樹脂柱20%,40%,60%,80%乙醇分別洗脫
分段收集脫色結晶乾燥混合、篩分、包裝檢測合格后入庫 
 
參考文獻:

1.Seymour RB, Deanin RD, editors. History of polymeric composites. Utrecht, The Netherlands: VNU Science Press; 1987. pp. 223.
2.Nedelcev T, Krupa I, Csomorova K, Janigova I, Rychly J. Synthesis and characterization of the new silane-based antioxidant containing 2,6-di-tert-butylphenolic stabilizing moiety. Polym Adv Technol. 2007;18:157–64.
3.Pospíšil J. Exploitation of the current knowledge of antioxidant mechanisms for efficient polymer stabilization. Polym Adv Technol. 1992;3:443–55.
4.Bracco P, Brunella V, Zanetti M, Luda MP, Costa L. Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym Degrad Stab. 2007;92:2155–62.
5.Al-Malaika S, Goodwin C, Issenhuth S, Burdick D. The antioxidant role of alpha-tocopherol in polymers II. Melt stabilising effect in polypropylene. Polym Degrad Stab. 1999;64:145–56.
6.Al-Malaika S, Issenhuth S. The antioxidant role of alpha-tocopherol in polymers III. Nature of transformation products during polyolefins extrusion. Polym Degrad Stab. 1999;65:143–51.
7.Al-Malaika S. Vitamin E: an effective biological antioxidant for polymer stabilisation. Polym Polym Compos. 2000;8:537–42.
8.Al-Malaika S, Issenhuth S. The antioxidant role of vitamin E in polymers. IV. Reaction products of DL-alpha-tocopherol with lead dioxide and with polyolefins. Polymer. 2001;42:2915–39.
9.Al-Malaika S, Issenhuth S, Burdick D. The antioxidant role of vitamin E in polymers V. Separation of stereoisomers and characterisation of other oxidation products of dl-alpha-tocopherol formed in polyolefins during melt processing. Polym Degrad Stab. 2001;73:491–503.
10.Towatari K, Yoshida K, Mori N, Shimizu K, Kondo R, Sakai K. Polyphenols from the heartwood of Cercidiphyllum japonicum and their effects on proliferation of mouse hair epithelial cells. Planta Med. 2002;68:995–8.
11.Zhang YS, Ning ZX, Yang SZ, Wu H. Antioxidation properties and mechanism of action of dihydromyricetin from Ampelopsis grossedentata. Yao Xue Xue Bao. 2003;38:241–4.
12.Matsumoto T, Tahara S. Ampelopsin, a major antifungal constituent from Salix sachalinensis, and its methyl ethers. Nippon Nogeik Kaishi. 2001;75:659–67.
13.Hayashi T, Tahara S, Ohaushi T. Genetically-controlled leaf traits in two chemotypes of Salix sachalinensis Fr. Schm (Salicaceae). Biochem Syst Ecol. 2005;33:27–38.
14.Semsarzadeh MA, Poursorkhabi V. Synthesis and kinetics of non-isothermal degradation of amide grafted high density polyethylene. Polym Degrad Stab. 2009;94:1860–6.
15.Bockhorn H, Hornung A, Hornung U. Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements. J Anal Appl Pyrolysis. 1999;50:77–101.
16.Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535–40.
17.Ceamanos J, Mastral JF, Millera A, Aldea ME. Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments. J Anal Appl Pyrolysis. 2002;65:93–110.
18.Gao Z, Amasaki I, Nakada M. A thermogravimetric study on thermal degradation of polyethylene. J Anal Appl Pyrolysis. 2003;67:1–9.
19.Kim S, Jang E-S, Shin D-H, Lee K-H. Using peak properties of a DTG curve to estimate the kinetic parameters of the pyrolysis reaction: application to high density polyethylene. Polym Degrad Stab. 2004;85:799–805.
20.Sinfrônio FSM, Santos JCO, Pereira LG, Souza AG, Conceição MM, Fernandes VJ Jr, et al. Kinetic of thermal degradation of low-density and high-density polyethylene by non-isothermal thermogravimetry. J Therm Anal Calorim. 2005;79:393–9.
21.Koleva D, Atanassov A. Non-isothermal kinetics of degradation of ultra-high molecular mass polyethene composite materials: part I. Composite materials with fiber monocrystals. J Therm Anal Calorim. 2008;91:213–8.
22.Xin ML, Ma YJ, Xu K, Chen MC. Structure–activity relationship for dihydromyricetin as a new natural antioxidant in polymer. J Appl Polym Sci. 2012;. doi:10.1002/APP.38010.
23.Sheshkali HRZ, Assempour H, Nazockdast H. Parameters affecting the grafting reaction and side reactions involved in the free radical melt grafting of maleic anhydride onto high density polyethylene. J Appl Polym Sci. 2007;105:1869–81.
24.Bigger SW, Delatycki O. A new approach to the measurement of polymer photooxidation. J Polym Sci Polym Chem. 1987;25:3311–23.
25.Chen ZY, Chen PT, Ho KY, Fung KP, Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids. 1996;79:157–63.
26.Foti M, Piattelli M, Baratta MT, Ruberto G. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure–activity relationship. J Agric Food Chem. 1996;44:497–501.
27.Chen YH, Wang Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stab. 2007;92:280–91.
28.Chrissafis K, Paraskevopoulos KM, Stavrev SY, Docoslis A, Vassiliou A, Bikiaris DN. Characterization and thermal degradation mechanism of isotactic polypropylene/carbon black nanocomposites. Thermochim Acta. 2007;465(1–2):6–17.
29.Jankovic B, Adnaevic B, Mentus S. The kinetic study of temperature-programmed reduction of nickel oxide in hydrogen atmosphere. Chem Eng Sci. 2008;63:567–75.
30.Kissinger HE. Reaction kinetics on differential thermal analysis. Anal Chem. 1957;29:1702–6.
31.Ozawa T. Kinetics in differential thermal analysis. Bull Chem Soc Jpn. 1965;38:1881–6.
32.Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand A. 1966;

70:487–523.
33.Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.