虫草素

品名:虫草素

CAS號.: 73-03-0 
分子式: C10H13N5O3 
分子量: 251.24 

純度:≥1%-98%
檢測方式:HPLC-DAD or/and HPLC-ELSD

虫草素又稱冬虫夏草素、虫草菌素、蛹虫草菌素,別名3′-脫氧腺苷,是 個從真菌中分離出來的核苷類抗生素。

 目前研究結果表明,虫草素具有肺腎的保護性、抗三高、抗腫瘤、神經保護性、抗炎、抗氧化和免疫調節等生物活性。因此,虫草素在抗衰老、保健、新藥研製等領域備受學者關注

理化性質:

虫草素的分子式為C10H13N5O3,相對分子質量為251.25,能溶于水,乙醇,虫草素為含氮配糖體的核酸啣生物,屬嘌呤類生物碱;

虫草素化學性質:

熔點:225-229°C

比旋光度: D20 -47°; D27 -42°

沸點:394.4°C

密度:1.2938

折射率:1.7610

儲存條件:−20°C

 

產品詳詢:13657416805

References:

 

  1. 1.

    Cui, J. D. (2015) Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Critical Rev. Biotechnol. 35: 475–484.

     

  2. 2.

    Fung, J., G. Yue, K. P. Fung, X. Ma, X. Q. Yao, and W. H. Ko (2011) Cordyceps militaris extract stimulates Cl(-) secretion across human bronchial epithelia by both Ca(2+)(-) and cAMPdependent pathways. J. Ethnopharmacol. 138: 201–211

  3. 3.

    Tuli, H., S. Sandhu, and A. Sharma (2013) Pharmacological and therapeutic potential of Cordyceps with special reference to cordycepin. 3 Biotech. 4: 1–12.

  4. 4.

    Ueda, Y., K. Mori, S. Satoh, H. Dansako, M. Ikeda, and N. Kato (2014) Anti-HCV activity of the Chinese medicinal fungus Cordyceps militarisBiochem. Biophys. Res. Commun. 447: 341–345.

  5. 5.

    Wasser, S. (2014) Medicinal mushroom science: Current perspective, advances, evidences and challenges. Biomed. J. 37: 345–356.

  6. 6.

    Lennon, M. B. and R. J. Suhadolnik (1976) Biosynthesis of 3’-deoxyadenosine by Cordyceps militaris. Mechanism of reduction. Biochim. Biophysic. Acta 425: 532–536.

  7. 7.

    Xiang, L., Y. Li, Y. Zhu, H. Luo, C. Li, X. Xu, C. Sun, J. Song, L. Shi, L. He, W. Sun, and S. Chen (2014) Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis. Genom. 103: 154–159

  8. 8.

    Yin, Y., G. Yu, Y. Chen, S. Jiang, M. Wang, Y. Jin, X. Lan, Y. Liang, and H. Sun (2012) Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militarisPLoS One 7: 51853.

  9. 9.

    Zheng, P., Y. Xia, G. Xiao, C. Xiong, X. Hu, S. Zhang, H. Zheng, Y. Huang, Y. Zhou, S. Wang, G. P. Zhao, X. Liu, R. J. St. Leger, and C. Wang (2011) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12: R116.

  10. 10.

    Ni, H., X.H. Zhou, H. H. Li, and W. F. Huang (2009) Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris waster medium. J. Chromatogr. B 877: 2135–2141.

  11. 11.

    Rottman, F., M. L. Ibershof, and A. J. Guarino (1963) Studies on the synthesis and structure of cordycepin monophosphate. Biochim. Biophysic. Acta 76: 181–187.

  12. 12.

    Wang, H., M. Pan, C. Chang, S. Chang, and W. Hseih (2014) Optimization of ultrasonic-assisted extraction of cordycepin from Cordyceps militaris using orthogonal experimental design. Molecules 199: 20808–20820.

  13. 13.

    Zhou, X., Z. Gong, Y. Su, J. Lin, and K. Tang (2009) Cordyceps fungi: Natural products pharmacological functions and developmental products. J. Pharm. Pharmacol. 61: 279–291.

  14. 14.

    Das, S. K., M. Masuda, M. Hatashita, A. Sakurai, and M. Sakakibara (2010) Optimization of culture medium for cordycepin production using Cordyceps militaris mutant obtained by ion beam irradiation. Proc. Biochem. 45: 129–132.

  15. 15.

    Masuda, M., E. Urabe, H. Honda, A. Sakurai, and M. Sakakibara (2007) Enhanced production of cordycepin by surface culture using the medicinal mushroom Cordyceps militarisEnz. Microb. Technol. 40: 1199–1205.

  16. 16.

    Das, S. K., M. Masuda, M. Hatashita, A. Sakurai, and M. Sakakibara (2008) A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high energy ion beam irradiation. Lett. Appl Microbiol. 47: 534–538.

  17. 17.

    Tang, Y. J. and J. J. Zhong (2003) Scale-up of a liquid surface culture process for hyperproduction of ganoderic acid by the medicinal mushroom Ganoderma lucidum. Biotechnol. Prog. 19: 1842–1846.

  18. 18.

    Kang, C., T. C. Wen, J. C. Kang, Z. B. Meng, G. R. Li, and K. D. Hyde (2014) Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid surface culture. The Scientific World J. 2014: 510627.

  19. 19.

    Mao, X. B. and J. J. Zhong (2004) Hyperproduction of cordycepin by two-stage dissolved oxygen control in submerged cultivation of medicinal mushroom Cordyceps militaris in bioreactors. Biotechnol. Prog. 20: 1408–1413.

  20. 20.

    Dong, J. Z., M. R. Lui, C. Lei, X. J. Zheng, and Y. Wang (2012) Effects of selenium and light wavelengths on liquid culture of Cordyceps militaris link. Appl. Biochem. Biotechnol. 166: 2030–2036.

  21. 21.

    López, F. N., M. C. Quintana, and A. G. Fernández (2006) The use of a D-optimal design to model the effects of temperature, NaCl, type and acid concentration on Lactobacillus pentosus IGLAC01. J. Appl. Microbiol. 101: 913–926.

  22. 22.

    Piccolomini, A. A., A. Fiabon, M. Borrotti, and D. De Lucrezia (2016) Optimization of thermophilic trans-isoprenyl diphosphate synthase expression in Escherichia coli by response surface methodology. Biotechnol. Appl. Biochem. DOI: 10.1002/bab.1459

  23. 23.

    Srikanth, R., G. Siddartha, C. H. Sundhar Reddy, B. S. Harish, R. M. Janaki, and K. B. Ramaiah (2015) Antioxidant and antiinflammatory levan produced from Acetobactor xylinum NCIM2526 and its statistical optimization. Carbohyd. Polym. 123: 8–16.

  24. 24.

    Zhou, Q., J. Su, H. Jiang, X. Huang, and Y. Xu (2010) Optimization of phenazine-1-carboxylic acid production by a gacA/ qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032Phz using response surface methodology. Appl. Microbiol. Biotechnol. 86: 1761–1773.

  25. 25.

    Zheng, Z. L., X. H. Qiu, and R. C. Han (2015) Identification of the genes involved in the fruiting body production and cordycepin formation of Cordyceps militaris fungus. Mycobiol. 43: 37–42.

  26. 26.

    Das, S. K., M. Masuda, A. Sakurai, and M. Sakakibara (2009) Effects of additives on Cordycepin production using a Cordyceps militaris mutant induced by ion beam irradiation. Afr. J. Biotechnol. 8: 3041–3047.

  27. 27.

    Mao, X. B., T. Eksriwong, S. Chauvatcharin, and J. J. Zhong (2005) Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militarisProc. Biochem. 40: 1667–1672.

  28. 28.

    Mao, X. B. and J. J. Zhong (2006) Significant effect of NH4 + on cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militarisEnz. Microb. Technol. 38: 343–350.

  29. 29.

    Shih, I. L., K. L. Tsai, and C. Hsieh (2007) Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militarisBiochem. Eng. J. 33: 193–201.

  30. 30.

    Masuda, M., E. Urabe, A. Sakurai, and M. Sakakibara (2006) Production of cordycepin by surface culture using the medicinal mushroom Cordyceps militarisEnz. Microb. Technol. 40: 1199–1205.

  31. 31.

    Masuda, M., S. K. Das, S. Fujihara, M. Hatashita, and A. Sakurai (2014) Efficient production of cordycepin by the Cordyceps militaris mutant G81-3 for practical use. Proc. Biochem. 49: 181–187

  32.