藤茶提取物二氢杨梅素

来源:藤茶

拉丁名称:Ampelopsis grossedentata(Hand-Mazz)WT Wan

提取部位:叶子

规格: 5%-98%
有效成份 :二氢杨梅素

CAS:327-97-9

检测方式:HPLC
颜色: 类白色粉末

 

植物介绍:
显齿蛇葡萄( Ampelopsis  grossedentata(Hand - Mazz)WT Wan ) 显齿蛇葡 藤,茶属 葡萄科 ,蛇葡萄属,又称藤茶,木质藤本, 植 物体全部无毛;卷须二分叉,长可达 12cm。叶为 二 回羽状复叶 ,长可达 21cm,小叶9 ~15 片,最下 羽 片有小叶3 片;枝顶部叶为一回羽状复叶;小叶草质或薄纸质,长椭圆形、卵形、菱状狭卵形或披针形, 长 2.5 ~ 7cm,宽 13cm,顶端渐尖或急尖,基部楔形或宽楔形,边缘有粗锯齿,上面绿色, 下面淡绿色,幼叶略带紫红色;叶柄长 1.5 ~3cm,枝上部叶几无柄,顶生小叶具柄,侧生小叶无柄,
稍偏斜。聚伞花序与叶对生;总花梗长 3~5cm;花小,黄绿色;花萼浅杯状,花瓣 5片,长圆形;雄蕊 5 枚;花盘浅杯状。浆果近球形,直径 7~10mm。花期 6~9 月,果期 7~11 月。采收时间为 4~8 月份。
产地生源:湖南、云南、广西、广东、江西、贵州、湖北、福建(南靖、上杭、龙岩、连城、长汀、永安、三明、沙县、宁化、建宁、南平、建瓯、建阳、武夷山、浦城、顺昌、光泽)等海拔 400~1300 米的山地灌丛中、林中、石上、河边。
化学成分: 主要含有二氢杨梅素(dihydromyricetin ),杨梅素( myricetin )、槲皮素(quercetin)、槲皮素,花旗松素( taxifolin)、洋芹苷(apiin)等黄酮类物质。其主要成分为二氢杨梅素。 
 
 
 

 

二氢杨梅素的功效

二氢杨梅素为葡萄属植物藤茶的提取物,是藤茶中的主要活性成分黄酮类化合物,此类物质具有清除自由基、抗氧化、抗血栓、抗肿瘤、消炎等多种奇特功效;而二氢杨梅素是较为特殊的一种黄酮类化合物,在解除醇中毒、预防酒精肝、脂肪肝、抑制肝细胞恶化、降低肝癌的发病率、抗高血压、抑制体外血小板聚集和体内血栓的形成、降低血脂和血糖水平,提高 SOD 活性以及保肝护肝等方面具有特殊功效。

藤茶提取物 - 二氢杨梅素简介

藤茶,是葡萄科蛇葡萄属的一种野生木质藤本植物,提取成分为二氢杨梅素,其中主要活性成分为黄酮类化合物,此类物质具有清除自由基、抗氧化、抗血栓、抗肿瘤、消炎等多种奇特功效;而二氢杨梅素是较为特殊的一种黄酮类化合物,除具有黄酮类化合物的一般特性外,还具有解除醇中毒、预防酒精肝、脂肪肝、抑制肝细胞恶化、降低肝癌的发病率等作用。是保肝护肝,解酒醒酒的良品。

HPLC法测定二氢杨梅素含量的操作规程

起草单位:长沙上禾生物科技有限公司

目  的:HPLC法测定二氢杨梅素含量的操作规程

责任人:QC员。

内  容:

1、 试剂

1.1 甲醇(HPLC级)

1.2 蒸馏水(AR级)

1.3冰醋酸(HPLC级)

2、 对照品

二氢杨梅素(购自中国药品生物制品检定所)

3、 仪器和用具

3.1 电子天平(1/100000)

3.2 玻璃仪器:100ml容量瓶

3.3 安捷伦1220 HPLC

4、液相条件

4.1流动相:甲醇:水:冰醋酸=50:50:1

4.2检测波长:292nm

4.3流速:1ml/min

4.4柱温:30℃

5 、  操作步骤

5.1 对照品溶液的制备  精密称取在110℃干燥至恒重的二氢杨梅素对照品10mg,置50ml容量瓶中,加50%甲醇适量,超声处理10min使溶解,放冷,加50%甲醇至刻度,摇匀,备用。

 5.2样品溶液制备  精密称取在110℃干燥至恒重的二氢杨梅素样品10mg,置50ml容量瓶中,加50%甲醇适量,超声处理10min使溶解,放冷,加50%甲醇至刻度,摇匀,备用。

6、检测

取对照品溶液和样品溶液0.22μm针孔过滤器过滤,进样20µl,根据峰面积计算样品含量。

含量按以下公式计算:

    A2 x C1 x T

R=------------------------- x 100

A1 x C2

C1: 对照品的参考浓度,mg/ml

C2: 样品的参考浓度,mg/ml

A1: 对照品溶液的色谱主峰值面积

A2: 样品溶液的色谱主峰值面积

T:  对照品的含量

藤茶生产工艺流程

  藤茶提取物-二氢杨梅素生产工艺流程:
 
原料挑洗去杂粉碎乙醇提取浓缩离心上大孔树脂柱20%,40%,60%,80%乙醇分别洗脱
分段收集脱色结晶干燥混合、筛分、包装检测合格后入库 
 
参考文献:

1.Seymour RB, Deanin RD, editors. History of polymeric composites. Utrecht, The Netherlands: VNU Science Press; 1987. pp. 223.
2.Nedelcev T, Krupa I, Csomorova K, Janigova I, Rychly J. Synthesis and characterization of the new silane-based antioxidant containing 2,6-di-tert-butylphenolic stabilizing moiety. Polym Adv Technol. 2007;18:157–64.
3.Pospíšil J. Exploitation of the current knowledge of antioxidant mechanisms for efficient polymer stabilization. Polym Adv Technol. 1992;3:443–55.
4.Bracco P, Brunella V, Zanetti M, Luda MP, Costa L. Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym Degrad Stab. 2007;92:2155–62.
5.Al-Malaika S, Goodwin C, Issenhuth S, Burdick D. The antioxidant role of alpha-tocopherol in polymers II. Melt stabilising effect in polypropylene. Polym Degrad Stab. 1999;64:145–56.
6.Al-Malaika S, Issenhuth S. The antioxidant role of alpha-tocopherol in polymers III. Nature of transformation products during polyolefins extrusion. Polym Degrad Stab. 1999;65:143–51.
7.Al-Malaika S. Vitamin E: an effective biological antioxidant for polymer stabilisation. Polym Polym Compos. 2000;8:537–42.
8.Al-Malaika S, Issenhuth S. The antioxidant role of vitamin E in polymers. IV. Reaction products of DL-alpha-tocopherol with lead dioxide and with polyolefins. Polymer. 2001;42:2915–39.
9.Al-Malaika S, Issenhuth S, Burdick D. The antioxidant role of vitamin E in polymers V. Separation of stereoisomers and characterisation of other oxidation products of dl-alpha-tocopherol formed in polyolefins during melt processing. Polym Degrad Stab. 2001;73:491–503.
10.Towatari K, Yoshida K, Mori N, Shimizu K, Kondo R, Sakai K. Polyphenols from the heartwood of Cercidiphyllum japonicum and their effects on proliferation of mouse hair epithelial cells. Planta Med. 2002;68:995–8.
11.Zhang YS, Ning ZX, Yang SZ, Wu H. Antioxidation properties and mechanism of action of dihydromyricetin from Ampelopsis grossedentata. Yao Xue Xue Bao. 2003;38:241–4.
12.Matsumoto T, Tahara S. Ampelopsin, a major antifungal constituent from Salix sachalinensis, and its methyl ethers. Nippon Nogeik Kaishi. 2001;75:659–67.
13.Hayashi T, Tahara S, Ohaushi T. Genetically-controlled leaf traits in two chemotypes of Salix sachalinensis Fr. Schm (Salicaceae). Biochem Syst Ecol. 2005;33:27–38.
14.Semsarzadeh MA, Poursorkhabi V. Synthesis and kinetics of non-isothermal degradation of amide grafted high density polyethylene. Polym Degrad Stab. 2009;94:1860–6.
15.Bockhorn H, Hornung A, Hornung U. Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements. J Anal Appl Pyrolysis. 1999;50:77–101.
16.Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535–40.
17.Ceamanos J, Mastral JF, Millera A, Aldea ME. Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments. J Anal Appl Pyrolysis. 2002;65:93–110.
18.Gao Z, Amasaki I, Nakada M. A thermogravimetric study on thermal degradation of polyethylene. J Anal Appl Pyrolysis. 2003;67:1–9.
19.Kim S, Jang E-S, Shin D-H, Lee K-H. Using peak properties of a DTG curve to estimate the kinetic parameters of the pyrolysis reaction: application to high density polyethylene. Polym Degrad Stab. 2004;85:799–805.
20.Sinfrônio FSM, Santos JCO, Pereira LG, Souza AG, Conceição MM, Fernandes VJ Jr, et al. Kinetic of thermal degradation of low-density and high-density polyethylene by non-isothermal thermogravimetry. J Therm Anal Calorim. 2005;79:393–9.
21.Koleva D, Atanassov A. Non-isothermal kinetics of degradation of ultra-high molecular mass polyethene composite materials: part I. Composite materials with fiber monocrystals. J Therm Anal Calorim. 2008;91:213–8.
22.Xin ML, Ma YJ, Xu K, Chen MC. Structure–activity relationship for dihydromyricetin as a new natural antioxidant in polymer. J Appl Polym Sci. 2012;. doi:10.1002/APP.38010.
23.Sheshkali HRZ, Assempour H, Nazockdast H. Parameters affecting the grafting reaction and side reactions involved in the free radical melt grafting of maleic anhydride onto high density polyethylene. J Appl Polym Sci. 2007;105:1869–81.
24.Bigger SW, Delatycki O. A new approach to the measurement of polymer photooxidation. J Polym Sci Polym Chem. 1987;25:3311–23.
25.Chen ZY, Chen PT, Ho KY, Fung KP, Wang J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids. 1996;79:157–63.
26.Foti M, Piattelli M, Baratta MT, Ruberto G. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure–activity relationship. J Agric Food Chem. 1996;44:497–501.
27.Chen YH, Wang Q. Thermal oxidative degradation kinetics of flame-retarded polypropylene with intumescent flame-retardant master batches in situ prepared in twin-screw extruder. Polym Degrad Stab. 2007;92:280–91.
28.Chrissafis K, Paraskevopoulos KM, Stavrev SY, Docoslis A, Vassiliou A, Bikiaris DN. Characterization and thermal degradation mechanism of isotactic polypropylene/carbon black nanocomposites. Thermochim Acta. 2007;465(1–2):6–17.
29.Jankovic B, Adnaevic B, Mentus S. The kinetic study of temperature-programmed reduction of nickel oxide in hydrogen atmosphere. Chem Eng Sci. 2008;63:567–75.
30.Kissinger HE. Reaction kinetics on differential thermal analysis. Anal Chem. 1957;29:1702–6.
31.Ozawa T. Kinetics in differential thermal analysis. Bull Chem Soc Jpn. 1965;38:1881–6.
32.Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand A. 1966;

70:487–523.
33.Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.