品名:博落回提取物
有效成分:博落回总碱,血根碱,白屈菜红碱
颜色:橙黄色粉末
规格:总碱: 20%-60%;
比例产品 5:1, 10:1,20:1 TLC
血根碱 1-30%,白屈菜红碱:1-50%
检测方式:HPLC / TLC
血根碱 (Pseudochelerythrine)
CAS号.: 2447-54-3
Molecular Formula: C20H14NO4
Mol. Wt.: 332.09
博落回提取物由博落回果荚萃取而得,主要成分为血根碱与白屈菜红碱,属于天然无公害绿色产品。其主要生产企业长沙上禾生物科技有限公司,生产博落回提取物1-70%的博落回总碱。
博落回提取物自20世纪末开始在欧盟饲料市场得到推广应用,产品效果已获多年验证;在农药抑菌剂领域、日化领域及医药领域亦均有应用。博落回提取物抗菌效力强,抗菌谱广,对球菌、杆菌、革兰氏阳性和阴性菌都有抗菌活性,且对有些菌的活性强于常用药盐酸小檗碱及青霉素。
使用博落回提取物能帮助家畜有效抗菌止泻,促进动物胆汁和胰腺的分泌,增强动物免疫力。使用安全且效果明显,是一种符合绿色环保要求、比照欧盟生产管理的有机植物提取物。
博落回提取物规格:博落回总碱 60% 博落回总碱1-70%
以上资料 由上禾生物整理 产品详询:13657416805
S.N. Sarkar (1948) Isolation from argemone oil of dihydrosanguinarine and sanguinarine: toxicity of sanguinarine Nature 162 265–266 1:CAS:528:DyaH1MXhsVel
M.M. Chaturvedi A. Kumar B.G. Darany G.B.N. Chainy S. Agarwal B.B. Aggarwal (1997) Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBα phosphorylation, and degradation J. Biol. Chem. 28 30129–30134 10.1074/jbc.272.48.30129
T. Schmeller B. Latz-Bruning M. Wink (1997) Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defense against microorganisms and herbivores Phytochemistry 44 257–266 10.1016/S0031-9422(96)00545-6 1:CAS:528:DyaK2sXmvVaqtw%3D%3D 9004542
E. Seifen R.J. Adams R. Reimer (1979) Sanguinarine: a positive inotropic alkaloid which inhibits cardiac Na+, K+- ATPase Eur. J. Pharmacol. 60 373–377 10.1016/0014-2999(79)90245-0 1:CAS:528:DyaL3cXht1Wltrk%3D 230984
J. Ulrichová D. Walterová V. Preininger J. Slavik J. Lenfeld M. Cushman V. Šimánek (1983) Inhibition of acetylcholinesterase activity by some isoquinoline alkaloids Planta Med. 48 111–115 6611748
J. Wolff L. Knipling (1993) Antimicrotubule properties of benophenathridine alkaloids Biochemistry 32 13334–13339 10.1021/bi00211a047 1:CAS:528:DyaK3sXms1aju7Y%3D 7902132
N. Ahmad S. Gupta M.M. Husain K.M. Heiskanen H. Mukhtar (2000) Differential antiproliferative and apoptotic response of sanguinarine for cancer cell versus normal cells Clin. Cancer Res. 6 1524–1528
H. Tenenbaum M. Dahan M. Soell (1999) Effectiveness of a sanguinarine regimen after scaling and root planing J. Periodontol. 70 307–311 10.1902/jop.1999.70.3.307 1:STN:280:DyaK1M3ktVSkug%3D%3D 10225548
P.J. Becci H. Schwartz H.H. Barnis G.L. Southard (1987) Short-term toxicity studies of sanguinarine and two alkaloid extracts of Sanguinaria canadesis L J. Toxicol. Environ. Health 20 199–208 1:CAS:528
K.K. Upreti M. Das S.K. Khanna (1988) Biochemical toxicology of argemone alkaloids. III. Effect on lipid peroxidation in different subcellular fractions of the liver Toxicol. Lett. 42 301–308 10.1016/0378-4274(88)90115-4 1:CAS:528:DyaL1cXls1Ghtb4%3D 3176059
K.K. Upreti M. Das A. Kumar G.B. Singh S.K. Khanna (1989) Biochemical toxicology of argemone oil IV Short-term oral feeding response in rats Toxicology 58 285–298 10.1016/0300-483X(89)90142-X 1:CAS:528:DyaK3cXjsVGmsA%3D%3D 2799830
M. Das S.K. Khanna (1997) Clinicoepidemiological, toxicological, and safety evaluation studies on argemone oil Crit. Rev. Toxicol. 27 273–297 1:CAS:528:DyaK2sXjvFyqtrg%3D 9189656
R.K. Tandon D.S. Singh R.R. Arora P. Lal B.N. Tandon (1975) Epidemic dropsy in New Delhi Am. J. Clin. Nutr. 28 883–887 1:STN:280:CSqB3c3gs1M%3D 1146749
C.P. Thakur S.N. Prasad (1968) Observations on a recent outbreak of epidemic dropsy Ind. J. Med. Assoc. 50 203 1:STN:280:CCeB3sjpvFM%3D
M.K. Rathore (1982) Ophthalmological study of epidemic dropsy Br. J. Ophthalmol. 66 573–575 1:STN:280:Bi2B2Mjis1Q%3D 7104277
C.M. Hu H.W. Cheng Y.W. Cheng J.J. Kang (2000) Induction of skeletal muscle contracture and calcium release from isolated sarcoplasmic reticulum vesicles by sanguinarine Br. J. Pharmacol. 130 299–306 10.1038/sj.bjp.0703279 1:CAS:528:DC%2BD3cXjsl2mtbY%3D 10807666
C.M. Hu H.W. Cheng Y.W. Cheng J.J. Kang (2001) Effect of sanguinarine on vasorelaxation in rat thoracic aorta Jpn. J. Pharmacol. 85 47–53 10.1254/jjp.85.47 1:CAS:528:DC%2BD3MXotVOqsg%3D%3D 11243574
M.J. Su G.J. Chang M.H. Wu S.C. Kuo (1997) Electrophysiological basis for the antiarrhythmic action and positive inotropy of HA-7, a furoquinoline alkaloid derivative, in rat heart Br. J. Pharmacol. 122 1285–1289
E.D. Wills (1969) Lipid peroxide formation in microsomes Biochem. J. 113 315–324 1:CAS:528:DyaF1MXksVGkt7k%3D 4390101
Q. Liu H. Yan N.J. Dawes G.A. Mottino J.S. Frank H. Zhu (1996) Insulin-like growth factor II induces DNA synthesis in fetal and neonatal rat ventricular myocytes and cell culture Circ. Res. 79 716–726 1:CAS:528:DyaK28XmtVCmsL8%3D 8831495
M. Nishida J.P. Springhorn R.A. Kelly T.W. Smith (1993) Cell–cell signaling between adult rat ventricular myocytes and cardiac microvascular endothelial cells in heterotypic primary culture J. Clin. Invest. 91 1934–1941 1:CAS:528:DyaK3sXktVWksbs%3D 8486763
P. Simpsom S. Savion (1982) Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells Circ. Res. 50 101–116 7053872
K. Saito H. Fukunaga T. Matuoka S. Birou T. Kashima H. Tanaka (1986) Effects of tolbutamide on cultured heart cells of mice J. Mol. Cell Cardiol. 18 449–454 1:CAS:528:DyaL28XitFyqtr0%3D 3712453
J.A. Copello S. Barg A. Sonnleitner M. Porta P. Diaz-Sylvester M. Fill H. Schindler S. Fleischer (2002) Differential activation by Ca2+, ATP, and caffeine of cardiac and skeletal muscle ryanodine receptors after block by Mg2+ J. Membr. Biol. 187 51–64 10.1007/s00232-001-0150-x 1:CAS:528:DC%2BD38XjvFKgs7g%3D 12029377
H.A. Fozzard W.R. Gibbons (1973) Action potential and contraction of heart muscle Am. J. Cardiol. 31 182–192 10.1016/0002-9149(73)91031-X 1:CAS:528:DyaE3sXptlOhsA%3D%3D 4568435
J. Ross Jr B.E. Sobel (1972) Regulation of cardiac contraction Annu. Rev. Physiol. 34 47–90 10.1146/annurev.ph.34.030172.000403 1:CAS:528:DyaE38XkslaktLo%3D 4334850
J.C. Khatter M. Agbanyo R.J. Hoeschen S. Navaratnam R. Bains (1986) Digitalis-induced mechanical toxicity: protection by slow Ca++ channel blockers J. Pharmacol. Exp. Ther. 239 206–210 1:CAS:528:DyaL2sXktFY%3D 3020231
J.P. Morgan W.G. Wier P. Hess J.R. Blinks (1983) Influence of Ca++-channel blocking agents on calcium transient and tension development in isolated mammalian heart muscle Circ. Res. 52 suppl I 47–52 1:CAS:528:DyaL3sXktFKhur0%3D
F. Kavaler G. Brommundt (1987) Potentiation of contraction in bullfrog ventricle strips by manganese and nickel Am. J. Physiol. 253 1 Pt 1 C52–C59 1:CAS:528:DyaL2sXkvFCgsLs%3D 3496798
K. Tanonaka H. Kajiwara H. Kameda A. Takasaki S. Takeo (1999) Relationship between myocardial cation content␣and injury in reperfused rat hearts treated with cation channel blockers Eur. J. Pharmacol. 372 37–48 10.1016/S0014-2999(99)00172-7 1:CAS:528:DyaK1MXjs1ehtbg%3D 10374713
S.M. Harrison J.E. Frampton E. McCall M.R. Boyett C.H. Orchard (1992) Contraction and intracellular Ca2+, Na+, and H+ during acidosis in rat ventricular myocytes Am. J. Physiol. 262 2 Pt 1 C348–C357 1:CAS:528:DyaK38XhvFajtLY%3D 1539627
H. Reuter (1973) Divalent cations charge carriers in excitable membranes Progr. Biophys. Mol. 26 1–43 10.1016/0079-6107(73)90016-3 1:CAS:528:DyaE3sXltVWktrs%3D
L. Castelli F. Tanzi V. Taglietti J. Magistretti (2003) Cu2+, Co2+ and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons J. Membr. Biol. 195 121–136 10.1007/s00232-003-0614-2 1:CAS:528:DC%2BD3sXpt1Oqt7s%3D 1472475
A. Gwanyanya B. Amuzescu S. Zakharov R. Macianskiene K.R. Sipido V.M. Bolotina J. Vereecke K. Mubagwa (2004) Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation J. Physiol. 559 761–776 1:CAS:528:DC%2BD2cXot1Kitro%3D 15272039
A. Rom-Glas C. Sandler K. Kirschfeld B. Minke (1992) The␣nss mutation or lanthanum inhibits light-induced Ca2+␣influx into fly photoreceptors J. Gen. Physiol. 100 767–781 10.1085/jgp.100.5.767 1:CAS:528:DyaK3sXhs1Gmtbg%3D 1335476
P. Bahra J. Mesher S. Li C.T. Poll H. Danahay (2004) P2Y2-receptor-mediated activation of a contralateral, lanthanide sensitive calcium entry pathway in the human airway epithelium Br. J. Pharmacol. 143 91–98 10.1038/sj.bjp.0705913 1:CAS:528:DC%2BD2cXotVenu78%3D 15289296
L. Edward D.A. Hessinger (2000) Portuguese Man-of-war (Physalia physalis) venom induces calcium influx into cells by permeabilizing plasma membranes Toxicon 38 1015–1028 10.1016/S0041-0101(99)00213-5 10708794
T. Volk A.P. Schwoerer S. Thiessen J.H. Schultz H. Ehmke (2003) A polycystin-2-like large conductance cation channel in rat left ventricular myocytes Cardiovas. Res. 58 76–88 10.1016/S0008-6363(02)00858-1 1:CAS:528:DC%2BD3sXit12gsbs%3D
R.D. Nathan K. Kanai R.B. Clark W. Giles (1988) Selective block of calcium current by lanthanum in single bullfrog atrial cells J. Gen. Physiol. 91 549–572 10.1085/jgp.91.4.549 1:CAS:528:DyaL1cXkt1SqsLY%3D 2455767
M.E. Saxon E.M. Kobrinsky (1988) Ryanodine in low concentration is a Ca2+ release stimulator rather than inhibitor in rat myocardium Gen. Physiol. Biophys. 7 39–49 1:STN:280:BieB1cvisl0%3D 2456250
T. Netticadan A. Xu N. Narayanan (1996) Divergent effects of ruthenium red and ryanodine on Ca2+/calmodulin-dependent phosphorylation of the Ca2+ release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum Arch. Biochem. Biophys. 333 368–376 10.1006/abbi.1996.0403 1:CAS:528:DyaK28XlslSiurg%3D 8809075
G. Meissner (2002) Regulation of mammalian ryanodine receptors Front. Biosci. 7 d2072–d2080 1:CAS:528:DC%2BD38XmvFyls78%3D 12438018
A.F. Dulhunty P. Pouliquin (2003) What we don’t know␣about the structure of ryanodine receptor calcium release channels Clin. Exp. Pharmacol. Physiol. 30 713–723
F. Protasi (2002) Structure interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells Front. Biosci. 7 d650–d658 1:CAS:528:DC%2BD38XitlSjsbw%3D 11861217
A.V. Zima J.A. Copello L.A. Blatter (2003) Differential modulation of cardiac and skeletal muscle ryanodine receptor by NADH FEBS Lett. 547 32–36 10.1016/S0014-5793(03)00664-1 1:CAS:528:DC%2BD3sXlsVaitbk%3D 12860382
C. Hidalgo P. Aracena G. Sanchez P. Donoso (2002) Redox regulation of calcium release in skeletal and cardiac muscle Biol. Res. 35 183–193 1:CAS:528:DC%2BD3sXhtVWhtbY%3D 12415735
X. Zhu F.Z. Zamudio B.A. Olbinski L.D. Possani H.H. Valdivia (2004) Activation of skeletal ryanodine receptors by two novel scorpion toxins from Buthotus judaicus J. Biol. Chem. 279 26588–26596 10.1074/jbc.M403284200 1:CAS:528:DC%2BD2cXkvVWgt7o%3D 15067003
K.K. Upreti M. Das S.K. Khanna (1991) Role of antioxidants and scavengers on argemone oil-induced toxicity in rats Arch. Environ. Contam. Toxicol. 20 531–537 10.1007/BF01065845 1:CAS:528:DyaK3MXisVagsbk%3D 2069426
B.C. Bose R. Vijayvargiya A.Q. Saifi S.K. Sharma (1963) Chemical and pharmacological studies on Argemone mexicana J. Pharm. Sci. 52 1172 1:CAS:528:DyaF2cXkvVamsg%3D%3D 14088969
W.F. Graier K. Schmidt W.R. Kukovetz (1992) Is the bradykinin-induced Ca2+ influx and the formation of endothelium-derived relaxing factor mediated by a G protein Eur. J. Pharmacol. 225 43–49 10.1016/0922-4106(92)90037-V 1:CAS:528:DyaK38Xnslahsg%3D%3D 1311688