plumepoppy extract​ Sanguinarine 


Produce name:Macleaya cordata Extrat

Latin name: Macleaya cordata (Willd.)R.Br.

Active ingredients:Total alkaloids,sanguinarine,chelerythrine.

Appearance:Brown to yellow orange  fine powder

Specification:Total alkaloids: 20%-60%;

                     Ratio product: 5:1, 10:1,20:1 TLC

                     sanguinarine 1-30%,chelerythrine:1-50%

Test Method:HPLC / TLC

Sanguinarine (Pseudochelerythrine)

CAS No.: 2447-54-3

Molecular Formula: C20H14NO4

Mol. Wt.: 332.09



Macleaya cordata is a bloodroot which owns thousand year history of medicinal  usage in China. 13 kinds of alkaloids and other compounds such as sanguinarine,toddaline, protopine, a-allocryptopine, bocconine, rhizoma coptidis alkali,berberine, samin alkali and protopine are in the root and aerial parts.

 Macleaya cordata extract contains sanguinaine and chelerythrine, which have fungicidal and insecticidal activity. Sanguinarine(pseudochelerythrine) is a potent inhibitor of NF-kappaB activation, IkappaBalpha phosphorylation, and degradation.

Macleaya cordata contains several alkaloids including sanguinarine, chelerythrine,protopine, and allocryptopine. Our product, Macleaya cordata extract mainly constains with sanguinarine and chelerythrine. It was been show to be reversible inhibitors of the enzymatic hydrolysis of acetylthiocholine.

 

Macleaya cordata extract sanguinarine main function:

1.Strong bactericidal and antibacterial activity;

2.Anti-inflammatory;
3.Fungicidal and insecticidal;
4.Antioxidant properties;
5.Anti-cancer and treating prostate cancer

 

Macleaya cordata extract sanguinarine appliaction:

1.It is widely used in veterinary medicine filed.

2.It is widely used in feed additive field.

3.It is widely used in medicine field.

4.It is widely used in cosmetic field.

 

Why choose STAHERB for macleaya cordata extract 

1. Founded in 2010, Changsha staherb natural ingredients co.,ltd is a professional standardized plant extract manufacturer.

2. Hunan is the origin of macleaya cordata which is rich in wild resources, and staherb have built a macleaya cordata planting base with the local farmer, with sufficient raw material resources.

3. Macleaya extract is the main product of Changsha Staherb, which is produced all year round, with various specifications, stable quality and spot supply.

4. Changsha staherbhas a complete set of quality testing equipment and system, quality assurance

5. Staherb provide the suggestions on the use of macleaya cordata extract

6. The macleaya cordata production workshop of Changsha staherb is located in the raw material base, with better quality control of raw materials, lower production cost and better price.

7. Macleaya extract is widely used in Europe and China, with clear active ingredients and good effect.

 

For more product information pls contact email sales09@staherb.cn

  1. References:
  2. 1.

    S.N. Sarkar (1948) Isolation from argemone oil of dihydrosanguinarine and sanguinarine: toxicity of sanguinarine Nature 162 265–266 1:CAS:528:DyaH1MXhsVel

  3. 2.

    M.M. Chaturvedi A. Kumar B.G. Darany G.B.N. Chainy S. Agarwal B.B. Aggarwal (1997) Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBα phosphorylation, and degradation J. Biol. Chem. 28 30129–30134 10.1074/jbc.272.48.30129

  4. 3.

    T. Schmeller B. Latz-Bruning M. Wink (1997) Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defense against microorganisms and herbivores Phytochemistry 44 257–266 10.1016/S0031-9422(96)00545-6 1:CAS:528:DyaK2sXmvVaqtw%3D%3D 9004542

  5. 4.

    E. Seifen R.J. Adams R. Reimer (1979) Sanguinarine: a positive inotropic alkaloid which inhibits cardiac Na+, K+- ATPase Eur. J. Pharmacol. 60 373–377 10.1016/0014-2999(79)90245-0 1:CAS:528:DyaL3cXht1Wltrk%3D 230984 

  6. 5.

    J. Ulrichová D. Walterová V. Preininger J. Slavik J. Lenfeld M. Cushman V. Šimánek (1983) Inhibition of acetylcholinesterase activity by some isoquinoline alkaloids Planta Med. 48 111–115 6611748

  7. 6.

    J. Wolff L. Knipling (1993) Antimicrotubule properties of benophenathridine alkaloids Biochemistry 32 13334–13339 10.1021/bi00211a047 1:CAS:528:DyaK3sXms1aju7Y%3D 7902132 

  8. 7.

    N. Ahmad S. Gupta M.M. Husain K.M. Heiskanen H. Mukhtar (2000) Differential antiproliferative and apoptotic response of sanguinarine for cancer cell versus normal cells Clin. Cancer Res. 6 1524–1528

  9. 8.

    H. Tenenbaum M. Dahan M. Soell (1999) Effectiveness of a sanguinarine regimen after scaling and root planing J. Periodontol. 70 307–311 10.1902/jop.1999.70.3.307 1:STN:280:DyaK1M3ktVSkug%3D%3D 10225548 

  10. 9.

    P.J. Becci H. Schwartz H.H. Barnis G.L. Southard (1987) Short-term toxicity studies of sanguinarine and two alkaloid extracts of Sanguinaria canadesis L J. Toxicol. Environ. Health 20 199–208 1:CAS:528

  11. 10.

    K.K. Upreti M. Das S.K. Khanna (1988) Biochemical toxicology of argemone alkaloids. III. Effect on lipid peroxidation in different subcellular fractions of the liver Toxicol. Lett. 42 301–308 10.1016/0378-4274(88)90115-4 1:CAS:528:DyaL1cXls1Ghtb4%3D 3176059

  12. 11.

    K.K. Upreti M. Das A. Kumar G.B. Singh S.K. Khanna (1989) Biochemical toxicology of argemone oil IV Short-term oral feeding response in rats Toxicology 58 285–298 10.1016/0300-483X(89)90142-X 1:CAS:528:DyaK3cXjsVGmsA%3D%3D 2799830

     

  13. 12.

    M. Das S.K. Khanna (1997) Clinicoepidemiological, toxicological, and safety evaluation studies on argemone oil Crit. Rev. Toxicol. 27 273–297 1:CAS:528:DyaK2sXjvFyqtrg%3D 9189656

  14. 13.

    R.K. Tandon D.S. Singh R.R. Arora P. Lal B.N. Tandon (1975) Epidemic dropsy in New Delhi Am. J. Clin. Nutr. 28 883–887 1:STN:280:CSqB3c3gs1M%3D 1146749 

  15. 14.

    C.P. Thakur S.N. Prasad (1968) Observations on a recent outbreak of epidemic dropsy Ind. J. Med. Assoc. 50 203 1:STN:280:CCeB3sjpvFM%3D 

  16. 15.

    M.K. Rathore (1982) Ophthalmological study of epidemic dropsy Br. J. Ophthalmol. 66 573–575 1:STN:280:Bi2B2Mjis1Q%3D 7104277 

  17. 16.

    C.M. Hu H.W. Cheng Y.W. Cheng J.J. Kang (2000) Induction of skeletal muscle contracture and calcium release from isolated sarcoplasmic reticulum vesicles by sanguinarine Br. J. Pharmacol. 130 299–306 10.1038/sj.bjp.0703279 1:CAS:528:DC%2BD3cXjsl2mtbY%3D 10807666

  18. 17.

    C.M. Hu H.W. Cheng Y.W. Cheng J.J. Kang (2001) Effect of sanguinarine on vasorelaxation in rat thoracic aorta Jpn. J. Pharmacol. 85 47–53 10.1254/jjp.85.47 1:CAS:528:DC%2BD3MXotVOqsg%3D%3D 11243574

  19. 18.

    M.J. Su G.J. Chang M.H. Wu S.C. Kuo (1997) Electrophysiological basis for the antiarrhythmic action and positive inotropy of HA-7, a furoquinoline alkaloid derivative, in rat heart Br. J. Pharmacol. 122 1285–1289

  20. 19.

    E.D. Wills (1969) Lipid peroxide formation in microsomes Biochem. J. 113 315–324 1:CAS:528:DyaF1MXksVGkt7k%3D 4390101

  21. 20.

    Q. Liu H. Yan N.J. Dawes G.A. Mottino J.S. Frank H. Zhu (1996) Insulin-like growth factor II induces DNA synthesis in fetal and neonatal rat ventricular myocytes and cell culture Circ. Res. 79 716–726 1:CAS:528:DyaK28XmtVCmsL8%3D 8831495

  22. 21.

    M. Nishida J.P. Springhorn R.A. Kelly T.W. Smith (1993) Cell–cell signaling between adult rat ventricular myocytes and cardiac microvascular endothelial cells in heterotypic primary culture J. Clin. Invest. 91 1934–1941 1:CAS:528:DyaK3sXktVWksbs%3D 8486763

  23. 22.

    P. Simpsom S. Savion (1982) Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells Circ. Res. 50 101–116 7053872

  24. 23.

    K. Saito H. Fukunaga T. Matuoka S. Birou T. Kashima H. Tanaka (1986) Effects of tolbutamide on cultured heart cells of mice J. Mol. Cell Cardiol. 18 449–454 1:CAS:528:DyaL28XitFyqtr0%3D 3712453

  25. 24.

    J.A. Copello S. Barg A. Sonnleitner M. Porta P. Diaz-Sylvester M. Fill H. Schindler S. Fleischer (2002) Differential activation by Ca2+, ATP, and caffeine of cardiac and skeletal muscle ryanodine receptors after block by Mg2+ J. Membr. Biol. 187 51–64 10.1007/s00232-001-0150-x 1:CAS:528:DC%2BD38XjvFKgs7g%3D 12029377

  26. 25.

    H.A. Fozzard W.R. Gibbons (1973) Action potential and contraction of heart muscle Am. J. Cardiol. 31 182–192 10.1016/0002-9149(73)91031-X 1:CAS:528:DyaE3sXptlOhsA%3D%3D 4568435

  27. 26.

    J. Ross Jr B.E. Sobel (1972) Regulation of cardiac contraction Annu. Rev. Physiol. 34 47–90 10.1146/annurev.ph.34.030172.000403 1:CAS:528:DyaE38XkslaktLo%3D 4334850

  28. 27.

    J.C. Khatter M. Agbanyo R.J. Hoeschen S. Navaratnam R. Bains (1986) Digitalis-induced mechanical toxicity: protection by slow Ca++ channel blockers J. Pharmacol. Exp. Ther. 239 206–210 1:CAS:528:DyaL2sXktFY%3D 3020231

  29. 28.

    J.P. Morgan W.G. Wier P. Hess J.R. Blinks (1983) Influence of Ca++-channel blocking agents on calcium transient and tension development in isolated mammalian heart muscle Circ. Res. 52 suppl I 47–52 1:CAS:528:DyaL3sXktFKhur0%3D

  30. 29.

    F. Kavaler G. Brommundt (1987) Potentiation of contraction in bullfrog ventricle strips by manganese and nickel Am. J. Physiol. 253 1 Pt 1 C52–C59 1:CAS:528:DyaL2sXkvFCgsLs%3D 3496798

  31. 30.

    K. Tanonaka H. Kajiwara H. Kameda A. Takasaki S. Takeo (1999) Relationship between myocardial cation content␣and injury in reperfused rat hearts treated with cation channel blockers Eur. J. Pharmacol. 372 37–48 10.1016/S0014-2999(99)00172-7 1:CAS:528:DyaK1MXjs1ehtbg%3D 10374713

  32. 31.

    S.M. Harrison J.E. Frampton E. McCall M.R. Boyett C.H. Orchard (1992) Contraction and intracellular Ca2+, Na+, and H+ during acidosis in rat ventricular myocytes Am. J. Physiol. 262 2 Pt 1 C348–C357 1:CAS:528:DyaK38XhvFajtLY%3D 1539627

  33. 32.

    H. Reuter (1973) Divalent cations charge carriers in excitable membranes Progr. Biophys. Mol. 26 1–43 10.1016/0079-6107(73)90016-3 1:CAS:528:DyaE3sXltVWktrs%3D

  34. 33.

    L. Castelli F. Tanzi V. Taglietti J. Magistretti (2003) Cu2+, Co2+ and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons J. Membr. Biol. 195 121–136 10.1007/s00232-003-0614-2 1:CAS:528:DC%2BD3sXpt1Oqt7s%3D 1472475

  35. 34.

    A. Gwanyanya B. Amuzescu S. Zakharov R. Macianskiene K.R. Sipido V.M. Bolotina J. Vereecke K. Mubagwa (2004) Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation J. Physiol. 559 761–776 1:CAS:528:DC%2BD2cXot1Kitro%3D 15272039

  36. 35.

    A. Rom-Glas C. Sandler K. Kirschfeld B. Minke (1992) The␣nss mutation or lanthanum inhibits light-induced Ca2+␣influx into fly photoreceptors J. Gen. Physiol. 100 767–781 10.1085/jgp.100.5.767 1:CAS:528:DyaK3sXhs1Gmtbg%3D 1335476

  37. 36.

    P. Bahra J. Mesher S. Li C.T. Poll H. Danahay (2004) P2Y2-receptor-mediated activation of a contralateral, lanthanide sensitive calcium entry pathway in the human airway epithelium Br. J. Pharmacol. 143 91–98 10.1038/sj.bjp.0705913 1:CAS:528:DC%2BD2cXotVenu78%3D 15289296

  38. 37.

    L. Edward D.A. Hessinger (2000) Portuguese Man-of-war (Physalia physalis) venom induces calcium influx into cells by permeabilizing plasma membranes Toxicon 38 1015–1028 10.1016/S0041-0101(99)00213-5 10708794

  39. 38.

    T. Volk A.P. Schwoerer S. Thiessen J.H. Schultz H. Ehmke (2003) A polycystin-2-like large conductance cation channel in rat left ventricular myocytes Cardiovas. Res. 58 76–88 10.1016/S0008-6363(02)00858-1 1:CAS:528:DC%2BD3sXit12gsbs%3D

  40. 39.

    R.D. Nathan K. Kanai R.B. Clark W. Giles (1988) Selective block of calcium current by lanthanum in single bullfrog atrial cells J. Gen. Physiol. 91 549–572 10.1085/jgp.91.4.549 1:CAS:528:DyaL1cXkt1SqsLY%3D 2455767

  41. 40.

    M.E. Saxon E.M. Kobrinsky (1988) Ryanodine in low concentration is a Ca2+ release stimulator rather than inhibitor in rat myocardium Gen. Physiol. Biophys. 7 39–49 1:STN:280:BieB1cvisl0%3D 2456250

  42. 41.

    T. Netticadan A. Xu N. Narayanan (1996) Divergent effects of ruthenium red and ryanodine on Ca2+/calmodulin-dependent phosphorylation of the Ca2+ release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum Arch. Biochem. Biophys. 333 368–376 10.1006/abbi.1996.0403 1:CAS:528:DyaK28XlslSiurg%3D 8809075

  43. 42.

    G. Meissner (2002) Regulation of mammalian ryanodine receptors Front. Biosci. 7 d2072–d2080 1:CAS:528:DC%2BD38XmvFyls78%3D 12438018

  44. 43.

    A.F. Dulhunty P. Pouliquin (2003) What we don’t know␣about the structure of ryanodine receptor calcium release channels Clin. Exp. Pharmacol. Physiol. 30 713–723

  45. 44.

    F. Protasi (2002) Structure interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells Front. Biosci. 7 d650–d658 1:CAS:528:DC%2BD38XitlSjsbw%3D 11861217

  46. 45.

    A.V. Zima J.A. Copello L.A. Blatter (2003) Differential modulation of cardiac and skeletal muscle ryanodine receptor by NADH FEBS Lett. 547 32–36 10.1016/S0014-5793(03)00664-1 1:CAS:528:DC%2BD3sXlsVaitbk%3D 12860382

  47. 46.

    C. Hidalgo P. Aracena G. Sanchez P. Donoso (2002) Redox regulation of calcium release in skeletal and cardiac muscle Biol. Res. 35 183–193 1:CAS:528:DC%2BD3sXhtVWhtbY%3D 12415735

  48. 47.

    X. Zhu F.Z. Zamudio B.A. Olbinski L.D. Possani H.H. Valdivia (2004) Activation of skeletal ryanodine receptors by two novel scorpion toxins from Buthotus judaicus J. Biol. Chem. 279 26588–26596 10.1074/jbc.M403284200 1:CAS:528:DC%2BD2cXkvVWgt7o%3D 15067003

  49. 48.

    K.K. Upreti M. Das S.K. Khanna (1991) Role of antioxidants and scavengers on argemone oil-induced toxicity in rats Arch. Environ. Contam. Toxicol. 20 531–537 10.1007/BF01065845 1:CAS:528:DyaK3MXisVagsbk%3D 2069426

  50. 49.

    B.C. Bose R. Vijayvargiya A.Q. Saifi S.K. Sharma (1963) Chemical and pharmacological studies on Argemone mexicana J. Pharm. Sci. 52 1172 1:CAS:528:DyaF2cXkvVamsg%3D%3D 14088969

  51. 50.

    W.F. Graier K. Schmidt W.R. Kukovetz (1992) Is the bradykinin-induced Ca2+ influx and the formation of endothelium-derived relaxing factor mediated by a G protein Eur. J. Pharmacol. 225 43–49 10.1016/0922-4106(92)90037-V 1:CAS:528:DyaK38Xnslahsg%3D%3D 1311688