Product name:Neohesperidin
Latin Name: Citrus aurantium var. amara
Specifaction: 95%, 98%
Appearance: Off-White Powder
Part Used: Fruit
Active Ingredients: Neohesperidin
Molecular Formula: C28H34O15
Molecular Weight: 610.56
CAS NO: 13241-33-3
Test Method: HPLC
Hesperidin is a flavanone glycoside found abundantly in citrus fruits. Its aglycone form is called hesperetin. Its name is derived from the Hesperides nymphs of Greek mythology. Hesperidin is believed to play a role in plant defense. It acts as an antioxidant according to in vitro studies.
Synephrine is the main "active" compound found in the fruit of a plant called citrus aurantium. The fruit citrus aurantium is also known as zhi shi (in traditional Chinese medicine), and as green orange, sour orange and bitter orange in other parts of the world. Synephrine is chemically very similar to the e and pseudo-drine found in many OTC cold/allergy medications and in a number of weight loss and energy supplements which contain Ma Huang.
Product Name | Neohesperidin |
Synonyms | Hesperetin 7-neohesperidoside (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one (S)-4'-Methoxy-3',5,7-trihydroxyflavanone-7-[2-O-(α-L-rhamnopyranosyl)-β-D-glucopyranoside] |
CAS | 13241-33-3 |
Molecular Formula | C28H34O15 |
Molecular Weight | 610.56 |
Density | 1.65 g/cm3 |
Melting Point | 239-243°C |
Boiling Point | 933.7°C at 760 mmHg |
Flash Point | 306.7°C |
Storage | 2-8°C |
Refractive Index | 1.695 |
Appearance | Off-white powder |
Function | 1. Increased Metabolism 2.Increase Fat Break Down 3.Increased Thermogenesis 4.Decreased Appetite 5.Energy Increase 6.Increase Fat Burning and Weight Loss 7. A flavor enhancer and natural sweetener |
Application
1. As an active ingredient in dietary supplements
2. As an active ingredient in OTC and pharmaceutical field
3. Pro-material of Neohesperidin Dihydrochalcone
Function
Be used to synthesize the Neohesperidin Dihydrochalcone
1) To treat hypertension
2)To reduce the brittleness of capillary and prevent microvascular bleeding
3)Infarction
For more product information pls kindly contact email sales09@staherb.cn
Citrus aurantium extract |
||||
Active Ingredients |
Specs |
Test Method |
Appearance |
Solubility |
Synephrine |
6%-30% |
HPLC |
Brown-yellow powder |
Slightly soluble in water and methanol |
Hesperidin |
10%-98% |
HPLC |
Yellow to light brown powder |
Slightly soluble in methanol |
Hesperetin |
10%-98% |
HPLC |
Yellow to dark brown powder |
Slightly soluble in water and methanol |
Neohesperidin |
10%-98% |
HPLC |
Off-White or light yellow powder |
soluble in hot water and ethanol |
Diosmin/ Hesperidin |
9:1 |
HPLC |
Grayish Yellow or yellow powder |
Slightly soluble in water |
Citrus Bioflavonoids |
10%-90% |
HPLC |
Brown-yellow powder |
Slightly soluble in water |
Nobiletin |
98% |
HPLC |
White Crystalline powder |
soluble in hot water and ethanol |
PMFs (Polymethoxy Flavones) |
10%-98% |
HPLC |
Yellow to Brown |
Partially soluble in hot water and ethanol |
NHDC |
98% |
HPLC |
White |
soluble in water |
Citrus Polyphenols |
10%-90% |
HPLC |
Yellow to Brown |
soluble in water |
References:
Montmayeur JP, Liberles SD, Matsunami H, Buck LB: A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 2001, 4: 492–498.
Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou S, Jiang P, Ninomiya Y, Margolskee RF: Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 2003, 301: 850–853. 10.1126/science.1087155
Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS: Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999, 96: 541–551.
Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E: Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A 2002, 99: 4692–4696. 10.1073
Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS: Mammalian sweet taste receptors. Cell 2001, 106: 381–390.
Max M, Shanker YG, Huang L, Rong M, Liu Z, Campagne F, Weinstein H, Damak S, Margolskee RF: Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet 2001, 28: 58–63.
Terrillon S, Bouvier M: Roles of G-protein-coupled receptor dimerization. EMBO Rep 2004, 5: 30–34.
Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS: An amino-acid taste receptor. Nature 2002, 416: 199–202.
Brouwer JN, Hellekant G, Kasahara Y, van der Wel H, Zotterman Y: Electrophysiological study of the gustatory effects of the sweet proteins monellin and thaumatin in monkey, guinea pig and rat. Acta Physiol Scand 1973, 89: 550–557.
Sclafani A, Abrams M: Rats show only a weak preference for the artificial sweetener aspartame. Physiol Behav 1986, 37: 253–256. 10.1016/0031-9384(86)90228-3
Sclafani A, Perez C: Cypha [propionic acid, 2-(4-methoxyphenol) salt] inhibits sweet taste in humans, but not in rats. Physiol Behav 1997, 61: 25–29. 10.1016/S0031-9384(96)00316-2
Jiang P, Ji Q, Liu Z, Snyder LA, Benard LM, Margolskee RF, Max M: The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem 2004, 279: 45068–45075.
Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X: Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci U S A 2004, 101: 14258–14263.
Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, Max M, Margolskee RF: Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J Biol Chem 2005, 280: 34296–34305.
Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M: Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 2005, 280: 15238–15246.
Winnig M, Bufe B, Meyerhof W: Valine 738 and lysine 735 in the fifth transmembrane domain of rTas1r3 mediate insensitivity towards lactisole of the rat sweet taste receptor. BMC Neurosci 2005
Dogan M: Neohesperidin DC in food products: ; Trabzon, Türkiye. Volume 1. ; 2002:190–195.
DuBois GE, Crosby GA, Stephenson RA, Wingard RE Jr.: Dihydrochalcone sweeteners. Synthesis and sensory evaluation of sulfonate derivatives. J Agric Food Chem 1977, 25: 763–772.
DuBois GE, Crosby GA, Stephenson RA: Dihydrochalcone sweeteners. A study of the atypical temporal phenomena. J Med Chem 1981, 24: 408–428. 10.1021
Durroux T: Principles: a model for the allosteric interactions between ligand binding sites within a dimeric GPCR. Trends Pharmacol Sci 2005, 26: 376–384.
Morini G, Bassoli A, Temussi PA: From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor. J Med Chem 2005, 48: 5520–5529.
Kratochwil NA, Malherbe P, Lindemann L, Ebeling M, Hoener MC, Muhlemann A, Porter RH, Stahl M, Gerber PR: An automated system for the analysis of G protein-coupled receptor transmembrane binding pockets: alignment, receptor-based pharmacophores, and their application. J Chem Inf Model 2005, 45: 1324–1336.
Whitelaw ML, Chung HJ, Daniel JR: Synthesis and sensory evaluation of ring-substituted dihydrochalcone sweeteners. 2. Analogues of 3'-Carboxyhesperetin dihydrocahlcone, a high-potency dihydrochalcone sweetener. J Agric Food Chem 1991, 39: 663–667.
Whitelaw ML, Daniel JR: Synthesis and sensory evaluation of ring-substituted dihydrochalcone sweeteners. J Agric Food Chem 1991, 39: 44–51.
Naim M, Rogatka H, Yamamoto T, Zehavi U: Taste responses to neohesperidin dihydrochalcone in rats and baboon monkeys. Physiol Behav 1982, 28: 979–986. 10.1016/0031-9384(82)90163-9
Bachmanov AA, Tordoff MG, Beauchamp GK: Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem Senses 2001, 26: 905–913. 10.1093
Ballesteros JA, H. W: Integrated Methods for the Construction of Three-Dimensional Models and Computational Probing of Structure-Function Relations in G-Protein-Coupled Receptors. Methods in Neuroscience 1995, 25: 366–428.
Bassoli A, Merlini L, Morini G: Isovanillyl sweeteners. From molecules to receptors. Pure Appl Chem 2002, 74: 1181–1187. 10.1351/pac200274071181
DuBois GE, Crosby GA, Saffron P: Nonnutritive sweeteners: taste-structure relationships for some new simple dihydrochalcones. Science 1977, 195: 397–399.
Horowitz RM, Gentili B: Flavonoids of the Ponderosa lemon. Nature 1960, 185: 319.
Schiffman SS, Booth BJ, Sattely-Miller EA, Graham BG, Gibes KM: Selective inhibition of sweetness by the sodium salt of +/-2-(4-methoxyphenoxy)propanoic acid. Chem Senses 1999, 24: 439–447. 10.1093
Hu J, McLarnon SJ, Mora S, Jiang J, Thomas C, Jacobson KA, Spiegel AM: A region in the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+. J Biol Chem 2005, 280: 5113–5120. 10.1074
Malherbe P, Kratochwil N, Knoflach F, Zenner MT, Kew JN, Kratzeisen C, Maerki HP, Adam G, Mutel V: Mutational analysis and molecular modeling of the allosteric binding site of a novel, selective, noncompetitive antagonist of the metabotropic glutamate 1 receptor. J Biol Chem 2003, 278: 8340–8347. 10.1074
Petrel C, Kessler A, Maslah F, Dauban P, Dodd RH, Rognan D, Ruat M: Modeling and mutagenesis of the binding site of Calhex 231, a novel negative allosteric modulator of the extracellular Ca(2+)-sensing receptor. J Biol Chem 2003, 278: 49487–49494.
Pin JP, Galvez T, Prezeau L: Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 2003, 98: 325–354. 10.1016/S0163-7258(03)00038-X
Swaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka B: Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J Biol Chem 2005, 280: 22165–22171. 10.1074
Hu J, Reyes-Cruz G, Chen W, Jacobson KA, Spiegel AM: Identification of acidic residues in the extracellular loops of the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+ and a positive allosteric modulator. J Biol Chem 2002, 277: 46622–46631.
Malherbe P, Kratochwil N, Zenner MT, Piussi J, Diener C, Kratzeisen C, Fischer C, Porter RH: Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol 2003, 64: 823–832.
Miedlich SU, Gama L, Seuwen K, Wolf RM, Breitwieser GE: Homology modeling of the transmembrane domain of the human calcium sensing receptor and localization of an allosteric binding site. J Biol Chem 2004, 279: 7254–7263.
Pagano A, Ruegg D, Litschig S, Stoehr N, Stierlin C, Heinrich M, Floersheim P, Prezeau L, Carroll F, Pin JP, Cambria A, Vranesic I, Flor PJ, Gasparini F, Kuhn R: The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem 2000, 275: 33750–33758.
Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M: Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 2004, 279: 18990–18997.
Ray K, Tisdale J, Dodd RH, Dauban P, Ruat M, Northup JK: Calindol, a positive allosteric modulator of the human Ca(2+) receptor, activates an extracellular ligand-binding domain-deleted rhodopsin-like seven-transmembrane structure in the absence of Ca(2+). J Biol Chem 2005, 280: 37013–37020. 10.1074
Schaffhauser H, Rowe BA, Morales S, Chavez-Noriega LE, Yin R, Jachec C, Rao SP, Bain G, Pinkerton AB, Vernier JM, Bristow LJ, Varney MA, Daggett LP: Pharmacological characterization and identification of amino acids involved in the positive modulation of metabotropic glutamate receptor subtype 2. Mol Pharmacol 2003, 64: 798–810.
Ueda T, Ugawa S, Yamamura H, Imaizumi Y, Shimada S: Functional interaction between T2R taste receptors and G-protein alpha subunits expressed in taste receptor cells. J Neurosci 2003, 23: 7376–7380.