horsetail extract (Equisetum arvense L)

Botanical Source: Equisetum Arvense

Used Part: Root,Leaf

Specification: 7%, 2% Silica

                      4:1, straight powder

Appearance: Brown Yellow powder

Test Method: HPLC/TLC


Equisetum (horsetail, snake grass, puzzle grass) is the only living genus in Equisetaceae, a family of vascular plants that reproduce by spores rather than seeds. According to Herbs 2000, horsetail is related to plants that were around during the dinosaur era and are believed to have been as tall as 40 feet or more. In the middle Ages, horsetail clumps were used as scouring pads because of their silicon content.


Horsetail is an herbal supplement that contains the highest known content of silicon of any herb. Because of its silicon content, horsetail is well known in anti-aging beauty aids that are promoted by many of Hollywood's actors and actresses. Horsetail extract will also help you to heal quickly from conditions including sprains and torn ligaments, arthritis, tuberculosis and ulcers, and aid in maintaining healthy hair.


Main function:

1.Horsetail extract Silica acid has a good action on diuresis.
2.Horsetail extract can be used in relieving the pain caused by liver disease.
3. Horsetail extract can be a treatment of vomiting blood, cough, asthma and gonorrhea.
4. Horsetail extract is also used to stop the bleeding of wounds and promote rapid healing.
5.Horsetail extract is a folk remedy for kidney and bladder troubles, arthritis, bleeding ulcers, and tuberculosis.



1. Applied in the food field, it has become a new raw material which used in food and beverage industry;
2. Applied in the health product field;
3. Applied in the pharmaceutical field.

4.Applied in the dialy chemicals



For more product inforamtion pls kindly contact email








Brown Yellow fine powder












1% Min



Sieve Analysis

100% pass 80 mesh



Bulk density




Loss on Drying

5% Max.              



Sulphated Ash  




Extract Solvent 




Heavy Metal

20ppm Max




2ppm Max




2ppm Max




1ppm Max




1ppm Max



Residual Solvents

0.05% Max.





  1. 1.

    C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005)

  2. 2.

    A. Panaček, L. Kvitek, R. Prucek, M. Kolar, R. Večerova, N. Pizurova, V.K. Sharma, T. Nevečna, R. Zboril, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248–16253 (2006)

  3. 3.

    S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microb. 73, 1712–1720 (2007)

  4. 4.

    M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009)

  5. 5.

    V. Ilić, Z.V. Šaponjić, V.V. Vodnik, B. Potkonjak, P. Jovančić, J.M. Nedeljković, M. Radetić, The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohyd. Polym. 78, 564–569 (2009)

  6. 6.

    M. Radetić, V. Ilić, V.V. Vodnik, S. Dimitrijević, P. Jovančić, Z.V. Šaponjić, J.M. Nedeljković, Antibacterial effect of silver nanoparticles deposited on corona-treated polyester and polyamide fabrics. Polym. Adv. Technol. 19, 1816–1821 (2008)

  7. 7.

    V. Ilić, Z. Šaponjić, V. Vodnik, D. Mihailović, P. Jovančić, M. Radetić, A study of the antibacterial efficiency and coloration of dyed polyamide and polyester fabrics modified with colloidal Ag nanoparticles. J. Serb. Chem. Soc. 74, 349–357 (2009)

  8. 8.

    Y.-M. Cho, Y. Mizuta, J.-I. Akagi, T. Toyoda, M. Sone, K. Ogawa, Size-dependent acute toxicity of silver nanoparticles in mice. J. Toxicol. Pathol. 31, 73–80 (2018)

  9. 9.

    R. Vazquez-Muñoz, B. Borrego, K. Juárez-Moreno, M. García-García, J.D. Mota Morales, N. Bogdanchikova, A. Huerta-Saquero, Toxicity of silver nanoparticles in biological systems: does the complexity of biological systems matter? Toxicol. Lett. 276, 11–20 (2017)

  10. 10.

    V.V. Vukovic, J.M. Nedeljkovic, Surface modification of nanometer-scale silver particles by imidazole. Langmuir 9, 980–983 (1993)

  11. 11.

    S. Onitsuka, T. Hamada, H. Okamura, Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids Surf. B 173, 242–248 (2019)

  12. 12.

    M. Chen, Y.G. Feng, X. Wang, T.C. Li, J.Y. Zhang, D.J. Qian, Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23, 5296–5304 (2007) 

  13. 13.

    C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential emplications for human health and the environment. J. Nanopart. Res. 12, 1531–1551 (2010) 

  14. 14.

    X. Dong, X. Ji, J. Jing, M. Li, J. Li, W. Yang, Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J. Phys. Chem. C 114, 2070–2074 (2010)

  15. 15.

    Z. Shan, J. Wu, F. Xu, F.-Q. Huang, H. Ding, Highly effective silver/semiconductor photocatalytic composites prepared by a silver mirror reaction. J. Phys. Chem. C 112, 15423–15428 (2008)

  16. 16.

    B. Pietrobon, M. McEachran, V. Kitaev, Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3, 21–26 (2009)

  17. 17.

    B. Wiley, Y. Sun, Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 40, 1067–1076 (2007)

  18. 18.

    W.R. Rolim, M.T. Pelegrino, B. de Araújo Lima, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodigues, M. Brocchi, A.B. Seabra, Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463, 66–74 (2019)

  19. 19.

    N. Durán, P.D. Marcato, M. Durán, A. Yadav, A. Gade, M. Rai, Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl. Microbiol. Biotechnol. 90, 1609–1624 (2011)

  20. 20.

    N. Durán, A.B. Seabra, Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms. Appl. Microbiol. Biotechnol. 95, 275–288 (2012)

  21. 21.

    N. Durán, A.B. Seabra, Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications. Curr. Nanosci. 14, 82–94 (2018)

  22. 22.

    S. Davidović, V. Lazić, I. Vukoje, J. Papan, S.P. Anhrenkiel, S. Dimitrijević, J.M. Nedeljković, Dextran coated silver nanoparticles—chemical sensor for selective cysteine detection. Colloids Surf. B 160, 184–191 (2017)

  23. 23.

    S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 9, 1–9 (2019)

  24. 24.

    M. Bhagat, R. Anand, R. Datt, V. Gupta, S. Arya, Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J. Inorg. Organomet. Polym. 29, 1039–1047 (2019)

  25. 25.

    M. Akter, M.M. Rahman, A.K.M.A. Ullah, M.T. Sikder, T. Hosokawa, T. Saito, M. Kurasaki, Brassica rapa var. japonica leaf extract mediated green synthesis of crystalline silver nanoparticles and evaluation of their stability, cytotoxicity and antibacterial activity. J. Inorg. Organomet. Polym. 28, 1483–1493 (2018)

  26. 26.

    Y. Gavamukulya, E.N. Maina, A.M. Meroka, E.S. Madivoli, H.A. El-Shemy, F. Wamunyokoli, G. Magoma, Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of Annona muricata. J. Inorg. Organomet. Polym. (2019). 

  27. 27.

    L. Huang, Y. Sun, S. Mahmud, H. Liu, Biological and environmental applications of silver nanoparticles synthesized using the aqueous extract of Gingo biloba leaf. J. Inorg. Organomet. Polym. (2019). 

  28. 28.

    P. Velusamy, J. Das, R. Pachaiappan, B. Vaseeharan, K. Pandian, Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Ind. Crop. Prod. 66, 103–109 (2015)

  29. 29.

    R. Sood, D.S. Chopra, Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds. Mater. Sci. Eng. C 92, 575–589 (2018)

  30. 30.

    R. Rajan, K. Chandran, S.L. Harper, S.-I. Yun, P.T. Kalaichelvan, Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind. Crop. Prod. 70, 356–373 (2015)

  31. 31.

    J.Y. Song, B.S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioproc. Biosyst. Eng. 32, 79 (2008)

  32. 32.

    S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7, 17–28 (2016)

  33. 33.

    M. Milutinović, N. Radovanović, M. Rajilić-Stojanović, S. Šiler-Marinković, S. Dimitrijević, S. Dimitrijević-Branković, Microwave-assisted extraction for the recovery of antioxidants from waste Equisetum arvense. Ind. Crop. Prod. 61, 388–397 (2014)

  34. 34.

    F.C.H.M. Do Monte, J.G. dos Santos, M. Russi, V.M.N. Bispo Lanziotti, L.K.A.M. Leal, G.M. de Andrade Cunha, Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacol. Res. 49, 239–243 (2004)

  35. 35.

    N.S. Sandhu, S. Kaur, D. Chopra, Equietum arvense: pharmacology and phytochemistry—a review. Asian. J. Pharm. Clin. Res. 3, 146–150 (2010)

  36. 36.

    R. Stefanović, Paradigma održivog razvoja poljoprivrede - strateški koncept zaštite životne sredine. Ecologica 17, 112–114 (2010)

  37. 37.

    J.M. Čanadanović-Brunet, G.S. Ćetković, S.M. Djilas, V.T. Tumbas, S.S. Savatović, A.I. Mandić, S.L. Markov, D.D. Cvetković, Radical scavenging and antimicrobial activity of horsetail (Equisetum arvense L.) extracts. Int. J. Food Sci. Technol. 44, 269–278 (2009)

  38. 38.

    K.P. Bankura, D. Maity, M.M.R. Mollick, D. Mondal, B. Bhowmick, M.K. Bain, A. Chakraborty, J. Sarkar, K. Acharya, D. Chattopadhyay, Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohyd. Polym. 89, 1159–1165 (2012)

  39. 39.

    J.M. Herrero-Martinez, M. Sanmartin, M. Roses, E. Bosch, C. Rafols, Determination of dissociation constants of flavonoids by capillary electrophoresis. Electrophoresis 26, 1886–1895 (2005)

  40. 40.

    N. Sauerwald, M. Schwenk, J. Polster, E. Bengsch, Spectrometric pK determination of daphnetin, chlorogenic acid and quercetin. Zeitschrift fur naturforschung B 53(3), 315–321 (1998 

  41. 41.

    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

  42. 42.

    T. Huang, X.-H.N. Xu, Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J. Mater. Chem. 20, 9867–9876 (2010)

  43. 43.

    P. Anbu, S.C.B. Gopinath, H.S. Yun, C.-G. Lee, Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. J. Mol. Struct. 1177, 302–309 (2019)

  44. 44.

    C.N. Lok, C.M. Ho, M. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 12, 527–534 (2007)

  45. 45.

    J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.N. Kouri, J.T. Ramirez, M.J. Yacaman, The antibacterial effect of silver nanoparticles. Nanotechnology 16, 2346 (2005)

  46. 46.

    Z.M. Xiu, J. Mao, P.J.J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 45, 9003–9008 (2011)

  47. 47.

    L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017)

  48. 48.

    D.H. Kim, J.C. Park, G.E. Jeon, C.S. Kim, J.H. Seo, Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol. Bioproc. Eng. 22, 210–217 (2017) 

  49. 49.

    M.A. Raza, Z. Kanwal, A. Rauf, A.N. Sabri, S. Riaz, S. Naseem, Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by Wet chemical routes. Nanomaterials (Basel, Switzerland) 6, 74 (2016)

  50. 50.

    I. Vukoje, E. Džunuzović, V. Vodnik, S. Dimitrijević, S.P. Ahrenkiel, J.M. Nedeljković, Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles. J. Mater. Sci. 49, 6838–6844 (2014) 

  51. 51.

    I. Vukoje, E. Džunuzović, D. Lončarević, S. Dimitrijević, S.P. Ahrenkiel, J.M. Nedeljković, Synthesis, characterization, and antimicrobial activity of silver nanoparticles on poly(GMA-co-EGDMA) polymer support. Polym. Compos. 38, 1206–1214 (2017)

  52. 52.

    V. Lazić, I. Smičiklas, J. Marković, D. Lončarević, J. Dostanić, S.P. Ahrenkiel, J.M. Nedeljković, Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid. Vacuum 148, 62–68 (2018)

  53. 53.

    V. Lazić, K. Mihajlovski, A. Mraković, E. Illés, M. Stoiljković, S.P. Ahrenkiel, J.M. Nedeljković, Antimicrobial activity of silver nanoparticles supported by magnetite. ChemistrySelect 4, 4018–4024 (2019)

  54. 54.

    C. Cattò, E. Garuglieri, L. Borruso, D. Erba, M.C. Casiraghi, F. Cappitelli, F. Villa, S. Zecchin, R. Zanchi, Impacts of dietary silver nanoparticles and probiotic administration on the microbiota of an in vitro gut model. Environ. Pollut. 245, 754–763 (2019) 

  55. 55.

    M. Panaček, R. Kolar, R. Večerova, J. Prucek, V. Soukupova, P. Kryštof, R. Hamal, L. Zboril, L. Kvitek, Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30, 6333–6340 (2009)